SECTION 2

DIVISION 28

VOICE EVACUATION FIRE ALARM SYSTEMS
APPENDIX
PART 1 - GENERAL

1.1 SUMMARY
 A. This Section covers fire alarm systems, including initiating devices, notification appliances, controls, and supervisory devices.
 B. Work covered by this section includes the furnishing of labor, equipment, and materials for installation of the fire alarm system as indicated on the drawings and specifications.
 C. The Fire Alarm System shall consist of all necessary hardware equipment and software programming to perform the following functions:
 1. Fire alarm system detection and notification operations.
 2. Control and monitoring of elevators, smoke control equipment, door hold-open devices, and other equipment as indicated in the drawings and specifications.

1.2 SCOPE OF WORK
 A. Provide a complete, non-coded, addressable, microprocessor-based fire alarm system with addressable initiating devices, non-addressable emergency voice alarm notification appliances, and monitoring and control devices as indicated on the drawings and as specified herein. System shall be fully interconnected into the UNCC campus wide fire alarm network and be compatible with the existing Simplex graphics monitoring/command unit. Full network integration providing all points of the new system into the existing network shall be provided.

1.3 ACCEPTABLE EQUIPMENT AND SERVICE PROVIDERS
 A. Manufacturers: The equipment and service described in this specification are those supplied and supported by SimplexGrinnell and represent the base bid for the equipment.
 1. Subject to compliance with the requirements of this specification, provide products by one of the following:
 a. Simplex, a Tyco International Company
 b. Pre-bid approved equal
 B. Being listed as an acceptable Manufacturer in no way relieves obligation to provide all equipment and features in accordance with these specifications.
 C. Alternate products must be submitted to the Engineer two weeks prior to bid for approval. Alternate or as-equal products submitted under this contract must provide a detailed line-by-line comparison of how the submitted product meets, exceeds, or does not comply with this specification.
 D. The equipment and service provider shall be a nationally recognized company specializing in fire alarm and detection systems. This provider shall employ factory trained and NICET Level III certified technicians, and shall maintain a service organization within 100 miles of this project location. The equipment and service provider shall have a minimum of 10 years experience in the fire protective signaling systems industry.

1.4 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this section.
B. The work covered by this section is to be coordinated with related work as specified elsewhere in the specifications. Requirements of the following sections apply:
1. Division 16: "Basic Electrical Materials and Methods."
2. Division 16: "Wiring Methods."
3. Division 13: "Fire Suppression."
4. Division 15: "Fire Protection."
5. Division 15: "HVAC Systems."
6. Division 13: "Building Automation and Control."

C. The system and all associated operations shall be in accordance with the following:
7. Local Jurisdictional Adopted Codes and Standards.

1.5 SYSTEM DESCRIPTION

A. General: Provide a complete, non-coded, addressable, microprocessor-based voice fire alarm system with initiating devices, notification appliances, and monitoring and control devices as indicated on the drawings and as specified herein.

B. Software: The fire alarm system shall allow for loading and editing instructions and operating sequences as necessary. The system shall be capable of 100% on-site programming to accommodate system expansion and facilitate changes in operation. All programming shall be capable of being accomplished via the front panel and via a lap top computer. All software operations shall be stored in a non-volatile programmable memory within the FACP. Loss of primary and secondary power shall not erase the instructions stored in memory.

C. History Logs: The system shall provide a means to recall alarms and trouble conditions in chronological order for the purpose of recreating an event history. Separate alarm, supervisory and trouble logs shall be provided.

D. Wiring/Signal Transmission:
1. Transmission shall be hard-wired, using separate individual circuits for each zone of alarm operation as required or addressable signal transmission, dedicated to fire alarm service only.
2. System connections for signaling line circuits shall be Class A, Style 6 and notification appliance circuits shall be Class B, Style Y.
3. Circuit Supervision: Circuit faults shall be indicated by a trouble signal at the FACP. Provide a distinctive indicating audible tone and alphanumeric annunciation.

E. Remote Access:
1. FACP shall have the capability to provide Remote Access through a Dial-Up Service Modem.
2. A personal computer or technician's laptop, configured with terminal emulation software shall have the ability to access the FACP for diagnostics, maintenance reporting and information gathering.

F. Required Functions: The following are required system functions and operating features:
1. Priority of Signals: Fire alarm events have highest priority. Subsequent alarm events are queued in the order received and do not affect existing alarm conditions. Priority Two, Supervisory and Trouble events have second-, third-, and fourth-level priority, respectively. Signals of a higher-level priority take precedence over signals of lower priority even though the lower-priority condition occurred first. Annunciate all events regardless of priority or order received.
2. Non-interfering: The activation of an addressable device does not prevent the receipt of signals from subsequent activations.
3. Transmission to an approved Supervising Station: Automatically route alarm, supervisory, and trouble signals to an approved supervising station service provider if required, under another contract.
4. Transmission to existing graphic monitoring/command units: Automatically route alarm, supervisory, and trouble signals to the existing fire alarm network workstations in King Hall and in Electrical Shop 11.
5. Compatibility with outdoor Mass Notification System for UNCC campus. MNS shall have the ability to activate building voice Fire Alarm System and transmit voice messages over the building FAS.
6. Local Annunciation: Operation of alarm and supervisory initiating devices shall be annunciated at the FACP and the remote Annunciator, indicating the type of device, the operational state of the device (i.e. alarm, trouble or supervisory) and shall display the custom label associated with the device.
7. General Alarm: A system general alarm shall include:
 a. Indication of alarm condition at the FACP and the Annunciator(s).
 b. Identification of the device/zone that is the source of the alarm at the FACP and the Annunciator(s).
 c. Operation of audible and visible notification appliances until silenced at FACP.
 d. Audible Alarm Notification shall operate as a Temporal Code pattern with pre-recorded emergency voice evacuation messages.
 e. Closing doors normally held open by magnetic door holders.
 f. Unlocking designated doors.
 g. Shutting down supply and return fans serving zone where alarm is initiated.
 h. Closing smoke dampers on system serving zone where alarm is initiated.
 i. Initiation of smoke control sequence.
 j. Transmission of signal to the supervising station.
 k. Transmission to campus fire alarm network graphic workstations.
 l. Initiation of elevator Phase I functions (recall, shunt trip, illumination of indicator in cab, etc.) in accordance with ASME/ANSI A17.1, when specified detectors or sensors are activated, as appropriate.
8. Supervisory Operations: Upon activation of a supervisory device such as a tamper switch, the system shall operate as follows:
 a. Activate the system supervisory service audible signal and illuminate the LED at the FACP and the graphic Annunciator.
 b. Pressing the Supervisory Acknowledge key will silence the supervisory audible signal while maintaining the Supervisory LED "on" indicating off-normal condition.
 c. Record the event in the FACP historical log.
 d. Transmission of supervisory signal to the supervising station.
 e. Transmission to campus fire alarm network graphic workstations.
9. Alarm Silencing: If the "Alarm Silence" button is pressed, all audible alarm signals shall cease operation.
10. System Reset
 a. The "System Reset" button shall be used to return the system to its normal state. Display messages shall provide operator assurance of the sequential steps ("IN PROGRESS", "RESET COMPLETED") as they occur. The system shall verify all circuits or devices are restored prior to resetting the system to avoid the potential for re-alarming the system. The display message shall indicate "ALARM PRESENT, SYSTEM RESET ABORTED."
 b. Should an alarm condition continue, the system will remain in an alarmed state.
11. Drill: A manual evacuation (drill) switch shall be provided to initiate an alarm on the FACP.
 a. Manual Control: Manual controls shall be supervised so that an "off normal" position of any switch shall cause an "off normal" system trouble. The "off normal"
status shall be clearly identified in plain-language on the FACP alphanumeric display.

b. Manual Bypass Control: The ability to perform a manual bypass of selected automatic functions shall be provided.

12. Circuit Enable/Disable Control: The system shall have provisions for disabling and enabling each circuit individually for maintenance or testing purposes.

13. WALKTEST: The system shall have a one person test feature. Enabling the one person test feature at the FACP shall activate the "One Person Testing" mode of the system as follows:
 a. The city circuit connection and suppression release circuits shall be bypassed for the testing group.
 b. Control relay functions associated to the testing group shall be bypassed.
 c. The FACP shall indicate a trouble condition.
 d. The alarm activation of any initiation device in the testing group shall cause the audible notification appliances to sound a code to identify the device.
 e. The control panel shall automatically reset itself after signaling is complete.
 f. Any momentary opening of an initiating or notification appliance circuit wiring shall cause the audible signals to sound for 4 seconds indicating the trouble condition.

G. Analog Smoke Sensors:
 1. Monitoring: FACP shall individually monitor sensors for calibration, sensitivity, and alarm condition, and shall individually adjust for sensitivity. The FACP shall determine the condition of each sensor by comparing the sensor value to the stored values.
 2. Environmental Compensation: The FACP shall maintain a moving average of the sensor’s smoke chamber value to automatically compensate for dust, dirt, and other conditions that could affect detection operations.
 3. Programmable Sensitivity: Photoelectric Smoke Sensors shall have 8 sensitivity levels ranging from 0.2% to 3.7%, programmed and monitored from the FACP.
 4. Sensitivity Testing Reports: The FACP shall provide sensor reports that meet NFPA 72 calibrated test method requirements. The reports shall be viewed on a Maintenance Terminal CRT Display or printed for annual recording and logging of the calibration maintenance schedule.
 5. Peak Value Logging: The FACP shall log the Peak Value of smoke obscuration or degree of temperature for each individual sensor to allow system calibration for maximum response time performance without nuisance alarms based on "actual ambient conditions".
 6. The FACP shall automatically indicate when an individual sensor needs cleaning. The system shall provide a means to automatically indicate when a sensor requires cleaning. When a sensor's average value reaches a predetermined value, (3) progressive levels of reporting are provided. The first level shall indicate if a sensor is close to a trouble reporting condition and will be indicated on the FACP as "ALMOST DIRTY." This condition provides a means to alert maintenance staff of a sensor approaching dirty without creating a trouble in the system. If this indicator is ignored and the second level is reached, a "DIRTY SENSOR" condition shall be indicated at the FACP and subsequently a system trouble is reported. The sensor base LED shall glow steady giving a visible indication at the sensor location. The "DIRTY SENSOR" condition shall not affect the sensitivity level required to alarm the sensor. If a "DIRTY SENSOR" is left unattended, and its average value increases to a third predetermined value, an "EXCESSIVELY DIRTY SENSOR" trouble condition shall be indicated at the control unit.
 7. The FACP shall continuously perform an automatic self-test on each sensor that will check sensor electronics and ensure the accuracy of the values being transmitted. Any sensor that fails this test shall indicate a "SELF TEST ABNORMAL" trouble condition.

H. Fire Suppression Monitoring:
 1. Water flow: Activation of a water flow switch shall initiate general alarm operations.
 2. Sprinkler valve tamper switch: The activation of any valve tamper switch shall activate system supervisory operations.
3. **Hood Suppression Systems:** Activation of a hood system shall initiate a general alarm sequence.

I. **Audible Alarm Notification:** By voice/audible alarm in areas as indicated on drawings.

J. **Power Requirements:**
 1. The control panel shall receive AC power via a dedicated fused disconnect circuit.
 2. The system shall be provided with sufficient battery capacity to operate the entire system upon loss of normal AC power in a normal supervisory mode for a period of 24 hours with 15 minutes of alarm operation at the end of this period. The system shall automatically transfer to battery standby upon power failure. All battery charging and recharging operations shall be automatic. If system is connected to a remote supervising station or central supervising station for monitoring provide 60 hours of standby with 15 minutes of alarm operation.
 3. All circuits requiring system-operating power shall be 24 VDC and shall be individually fused at the control panel.
 4. The incoming power to the system shall be supervised so that any power failure will be indicated at the control panel. A green "power on" LED shall be displayed continuously while incoming power is present.
 5. The system batteries shall be supervised so that a low battery condition or disconnection of the battery shall be indicated at the control panel.
 6. The system shall support 100% of addressable devices in alarm operated at the same time, under both primary (AC) and secondary (battery) power conditions.
 7. Loss of primary power shall sound a trouble signal at the FACP. FACP shall indicate when the system is operating on an alternate power supply.

1.6 **SUBMITTALS**

A. **General.** Submit the following according to Conditions of Contract and Division 1 Specification Sections:
 1. Product data sheets for system components highlighted to indicate the specific products, features, or functions required to meet this specification. Alternate or as-equal products submitted under this contract must provide a detailed line-by-line comparison of how the submitted product meets, exceeds, or does not comply with this specification.
 2. Wiring diagrams from manufacturer.
 3. Shop drawings showing system details including location of FACP, all devices, circuiting and details of graphic Annunciator.
 4. Graphic file layouts for integration into existing fire alarm network graphic workstations.
 5. System power and battery charts with performance graphs and voltage drop calculations to assure that the system will operate in accordance with the prescribed backup time periods and under all voltage conditions in accordance with UL and NFPA standards.
 6. System operation description including method of operation and supervision of each type of circuit and sequence of operations for all manually and automatically initiated system inputs and outputs. A list of all input and output points in the system shall be provided with a label indicating location or use of IDC, SLC, NAC, RAC, Sensor, and auxiliary control circuits.
 7. Operating instructions for FACP.
 8. Operation and maintenance data for inclusion in Operating and Maintenance Manual. Include data for each type product, including all features and operating sequences, both automatic and manual. Provide the names, addresses, and telephone numbers of service organizations.
 9. Product certification signed by the manufacturer of the fire alarm system components certifying that their products comply with indicated requirements.
 10. Record of field tests of system.

B. **Submission to Authority Having Jurisdiction:** In addition to routine submission of the above material, make an identical submission to the authority having jurisdiction. Include copies of
shop drawings as required to depict component locations to facilitate review. Upon receipt of comments from the Authority, make resubmissions, if required, to make clarifications or revisions to obtain approval.

1.7 CAD DRAWING FILES
A. System provider to develop appropriate drawing files to be imported into the existing fire alarm network graphic workstations. All required programming for integration of these drawing files into the workstations is to be provided. New floor plan layouts are to be consistent with the existing building floor plan files.

1.8 QUALITY ASSURANCE
A. Installer Qualifications: A factory authorized installer is to perform the work of this section.
B. Each and every item of the Fire Alarm System shall be listed under the appropriate category by Underwriters Laboratories, Inc. (UL), and shall bear the “UL” label.

1.9 MAINTENANCE SERVICE
A. Warranty Maintenance Service: Provide maintenance of fire alarm systems and equipment for a period of 12 months, using factory-authorized service representatives.
B. Basic Services: Systematic, routine maintenance visits on an annual basis at times scheduled with the Owner. In addition, respond to service calls within 24 hours of notification of system trouble. Adjust and replace defective parts and components with original manufacturer's replacement parts, components, and supplies.
C. Additional Services: Perform services within the above 12 month period not classified as routine maintenance or as warranty work when authorized in writing. Compensation for additional services must be agreed upon in writing prior to performing services.
D. Maintenance Service Contract: No later than 60 days prior to the expiration of the warranty maintenance services period, deliver to the Owner a proposal to provide contract maintenance and repair services for an additional one-year term. Owner will be under no obligation to accept maintenance service contract renewal proposal.

1.10 EXTRA MATERIALS
A. General: Furnish extra materials, packaged with protective covering for storage, and identified with labels clearly describing contents as follows:
 1. Break Rods for Manual Stations: Furnish quantity equal to 15 % of the number of manual stations installed; minimum of 6 rods.
 2. Fuses, two of each size in system.
 3. Manual fire alarm stations, furnish quantity equal to 2% of each type and number of units installed, but not less than one of each type.
 4. Addressable control relays, addressable monitor modules, isolator modules, isolator bases, furnish quantity equal to 4% of each type and number of units installed, but not less than one of each type.
 5. Indoor speaker appliances with strobe lights: Furnish quantity equal to 4% of each type and number of units installed, but not less than one of each type.
 6. Indoor Strobe only Notification Appliances: Furnish quantity equal to 4% of each type and number of units installed, but not less than one of each type.
 7. Heat Detectors or Sensors: Furnish quantity equal to 4% of each type and number of units installed but not less than one of each type.
 8. Smoke Detectors or Sensors: Furnish quantity equal to 6 % of each type and number of units installed but not less than one of each type.
9. Sensor Bases: Furnish quantity equal to 6 % of the number of units of each type installed but not less than one of each type.

PART 2 - PRODUCTS

2.1 FIRE ALARM CONTROL PANEL (FACP)
 A. General: Comply with UL 864, "Control Units and Accessories for Fire Alarm Systems".
 B. The following FACP hardware shall be provided:
 1. Power Limited base panel with beige cabinet and door, 120 VAC, 60 HZ input power.
 2. 2000 Addressable point capacity inclusive of inputs and outputs in any combination.
 3. 2000 points of annunciation where one (1) point of annunciation equals:
 a. 1 LED output or 1 switch input on a graphic driver module.
 b. 1 LED on panel or 1 switch on panel.
 4. LED Annunciator in compliance with NCDOI requirements.
 5. Three (4) Class B, Style Y Notification Appliance Circuits (NAC; rated 2.5A @ 24VDC, resistive).
 6. One form "C" Auxiliary Output Circuits (rated 2A @ 24VDC, resistive); operation is programmable for trouble, alarm, supervisory or other selective control operations. Provide capability for switching up to ½ A @ 120VAC, inductive loads.
 7. One Auxiliary electronically resettable fused 2A @24VDC Output, with programmable disconnect operation for 4-wire detector reset.
 8. The FACP shall support six (6) RS-232-C ports.
 9. Supervised serial communication channel for control and monitoring of remotely located LCD annunciators and I/O panels.
 10. Network Interface for connection to the existing Simplex campus fire alarm system network.
 11. Programmable DACT for either Common Event Reporting or per Point Reporting.
 C. Cabinet: Lockable steel enclosure. Arrange panel so all operations required for testing or for normal care and maintenance of the system are performed from the front of the enclosure. If more than a single panel is required to form a complete control panel, provide exactly matching modular panel enclosures.
 D. Alphanumeric Display and System Controls: Panel shall include an 80 character LCD display to indicate alarm, supervisory, and component status messages and shall include a keypad for use in entering and executing control commands.
 E. Voice Alarm: Provide an emergency communication system, integral with the FACP, including voice alarm system components, microphones, amplifiers, and tone generators. Features include:
 1. Amplifiers comply with UL 1711, "Amplifiers for Fire Protective Signaling Systems." Amplifiers shall provide an onboard local mode temporal coded horn tone as a default backup tone. Test switches on the amplifier shall be provided to test and observe amplifier backup switchover. Each amplifier shall communicate to the host panel amplifier and NAC circuit voltage and current levels for display on the user interface. Each amplifier shall be capable of performing constant supervision for non-alarm audio functions such as background music and general paging.
 2. Dual alarm channels permit simultaneous transmission of different announcements to different zones or floors automatically or by use of the central control microphone. All announcements are made over dedicated, supervised communication lines. All risers shall support Class A wiring for each audio channel.
 3. Emergency voice communication audio controller module shall provide up to 32 minutes of message memory for digitally stored messages. Provide supervised connections for master microphone and up to 5 remote microphones.
2.2 NETWORK FIRE ALARM CONTROL PANEL (NODE)

A. Network fire alarm control panels shall include all features as described in this specification for stand-alone FACPs and shall have network communication capabilities as described herein.
 1. All points monitored and controlled by a single node shall be capable of being programmed as "Public". Each point made public to the network may be programmed to be operated by any other node connected to the network.
 2. Network communications shall be capable of supporting "point lists" that can be handled as though they were a single point.

B. The network shall provide a means to log into any node on the system via a laptop computer or CRT/Keyboard and have complete network access (Set Host) for diagnostics, maintenance reporting, and information gathering of all nodes in the system. Systems not meeting this requirement must provide all diagnostic tools required to support this function from selected points on the network. This Section covers fire alarm systems, including initiating devices, notification appliances, controls, and supervisory devices.

C. Software: The fire alarm system shall allow for loading and editing instructions and operating sequences as necessary. The system shall be capable of on-site programming to accommodate system expansion and facilitate changes in operation. All software operations shall be stored in a non-volatile programmable memory within the fire alarm control unit. Loss of primary and secondary power shall not erase the instructions stored in memory. System shall be capable of storing dual configuration programs with one active and one in reserve. Panel shall be capable of full system operation during a new configuration download.

D. Network communication:
 1. Network node communication shall be through a token ring, hub, or star topology configuration, or combination thereof.
 2. A single open, ground or short on the network communication loop shall not degrade network communications. Token shall be passed in opposite direction to maintain communications throughout all network nodes. At the same time the status of the communication link shall be reported.
 3. If a group of nodes becomes isolated from the rest of the network due to multiple fault conditions, that group shall automatically form a sub-network with all common interaction of monitoring and control remaining intact. The network shall be notified with the exact details of the lost communications.
 4. Fiber optics communication between buildings shall be provided via a fiber optics communication. Fiber optics communication shall multiplex digital communication via full duplex transmission over a fiber optic cable.
 5. The communication method shall be NFPA 72 style 7.

2.3 REMOTE MAINTENANCE TERMINAL (CRT) AND PRINTERS

A. Fire Alarm Control Panel shall be capable of operating a remote maintenance terminal and/or printers; output shall be ASCII from an RS-232-C connection with an adjustable baud rate.

B. The FACP shall be capable of supporting and supervising as many as two (2) printers, or one (1) maintenance terminal and one (1) printer.
2.4 REMOTE LCD ANNUNCIATOR
 A. Provide Remote Annunciator(s) as required with the same "look and feel" as the FACP operator interface. The Remote LCD Annunciator shall use the same Primary Acknowledge, Silence, and Reset Keys, Status LEDs and LCD Display as the FACP.
 B. Annunciator shall have super-twist LCD display with two lines of 40 characters each. Annunciator shall be provided with three (3) programmable LEDs (two selectable as red or yellow; one selectable as green or yellow).
 C. Under normal conditions the LCD shall display a "SYSTEM IS NORMAL" message and the current time and date.
 D. Should an abnormal condition be detected the appropriate LED (Alarm, Supervisory or Trouble) shall flash. The unit audible signal shall pulse for alarm conditions and sound steady for trouble and supervisory conditions.
 E. The LCD shall display the following information relative to the abnormal condition of a point in the system:
 F. 40 character custom location label.
 G. Type of device (e.g., smoke, pull station,水流).
 H. Point status (e.g., alarm, trouble).
 I. Operator keys shall be key switch enabled to prevent unauthorized use. The key shall only be removable in the disabled position. Acknowledge, Silence and Reset operation shall be the same as the FACP.

2.5 EMERGENCY POWER SUPPLY
 A. General: Components include battery, charger, and an automatic transfer switch.
 B. Battery: Sealed lead-acid type. Provide sufficient capacity to operate the complete alarm system in normal or supervisory (non-alarm) mode for a period of 24 hours. Following this period of operation on battery power, the battery shall have sufficient capacity to operate all components of the system, including all notification appliances in alarm or supervisory mode for a period of 15 minutes. If system is connected to a remote supervising station or central supervising station for monitoring, provide battery capacity for 60 hours of standby with 15 minutes of alarm operation.

2.6 ADDRESSABLE MANUAL PULL STATIONS
 A. Description: Addressable double -action type, red LEXAN, with molded, raised-letter operating instructions of contrasting color. Station will mechanically latch upon operation and remain so until manually reset by opening with a key common with the control units.
 B. Protective Shield: Where required, as indicated on the drawings, provide a tamperproof, clear LEXAN shield and red frame that easily fits over manual pull stations.

2.7 SMOKE SENSORS
 A. General: Comply with UL 268, "Smoke Detectors for Fire Protective Signaling Systems." Include the following features:
 1. Factory Nameplate: Serial number and type identification.
 2. Operating Voltage: 24 VDC, nominal.
 3. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore normal operation.
 4. Plug-In Arrangement: Sensor and associated electronic components are mounted in a module that connects to a fixed base with a twist-locking plug connection. Base shall
provide break-off plastic tab that can be removed to engage the head/base locking mechanism. No special tools shall be required to remove head once it has been locked. Removal of the detector head shall interrupt the supervisory circuit of the fire alarm detection loop and cause a trouble signal at the control unit.

5. Each sensor base shall contain an LED that will flash each time it is scanned by the Control Unit (once every 4 seconds). In alarm condition, the sensor base LED shall be on steady.

6. Each sensor base shall contain a magnetically actuated test switch to provide for easy alarm testing at the sensor location.

7. Each sensor shall be scanned by the Control Unit for its type identification to prevent inadvertent substitution of another sensor type. Upon detection of a "wrong device", the control unit shall operate with the installed device at the default alarm settings for that sensor; 2.5% obscuration for photoelectric sensor, 135-deg F and 15-deg F rate-of-rise for the heat sensor, but shall indicate a "Wrong Device" trouble condition.

8. The sensor's electronics shall be immune from nuisance alarms caused by EMI and RFI.

9. Sensors include a communication transmitter and receiver in the mounting base having a unique identification and capability for status reporting to the FACP. Sensor address shall be located in base to eliminate false addressing when replacing sensors.

10. Removal of the sensor head for cleaning shall not require the setting of addresses.

B. Type: Smoke sensors shall be of the photoelectric or combination photoelectric / heat type.

C. Bases: Relay output, sounder and isolator bases shall be supported alternatives to the standard base.

D. Duct Smoke Sensor: Photoelectric type, with sampling tube of design and dimensions as recommended by the manufacturer for the specific duct size and installation conditions where applied. Sensor includes relay as required for fan shutdown.

1. Environmental compensation, programmable sensitivity settings, status testing, and monitoring of sensor dirt accumulation for the duct smoke sensor shall be provided by the FACP.

2. The Duct Housing shall provide a supervised relay driver circuit for driving up to 15 relays with a single "Form C" contact rated at 7A@ 28VDC or 10A@ 120VAC. This auxiliary relay output shall be fully programmable. Relay shall be mounted within 3 feet of HVAC control circuit.

3. Duct Housing shall provide a relay control trouble indicator Yellow LED.

4. Duct Housing shall have a transparent cover to monitor for the presence of smoke. Cover shall secure to housing by means of four (4) captive fastening screws.

5. Duct Housing shall provide two (2) Test Ports for measuring airflow and for testing. These ports will allow aerosol injection in order to test the activation of the duct smoke sensor.

6. Duct Housing shall provide a magnetic test area and Red sensor status LED.

7. For maintenance purposes, it shall be possible to clean the duct housing sampling tubes by accessing them through the duct housing front cover.

8. Each duct smoke sensor shall have a Remote Test Station with an alarm LED and test switch.

9. Where indicated provide a NEMA 4X weatherproof duct housing enclosure that shall provide for the circulation of conditioned air around the internally mounted addressable duct sensor housing to maintain the sensor housing at its rated temperature range. The housing shall be UL Listed to Standard 268A.

2.8 HEAT SENSORS

A. Thermal Sensor: Combination fixed-temperature and rate-of-rise unit with plug-in base and alarm indication lamp; 135-deg F fixed-temperature setting except as indicated.

B. Thermal sensor shall be of the epoxy encapsulated electronic design. It shall be thermistor-based, rate-compensated, self-restoring and shall not be affected by thermal lag.
C. Sensor fixed temperature sensing shall be independent of rate-of-rise sensing and programmable to operate at 135-deg F or 155-deg F. Sensor rate-of-rise temperature detection shall be selectable at the FACP for either 15-deg F or 20-deg F per minute.

D. Sensor shall have the capability to be programmed as a utility monitoring device to monitor for temperature extremes in the range from 32-deg F to 155-deg F.

2.9 ADDRESSABLE CIRCUIT INTERFACE MODULES

A. Addressable Circuit Interface Modules: Arrange to monitor or control one or more system components that are not otherwise equipped for addressable communication. Modules shall be used for monitoring of waterflow, valve tamper, non-addressable devices, and for control of AHU systems.

B. Addressable Circuit Interface Modules will be capable of mounting in a standard electric outlet box. Modules will include cover plates to allow surface or flush mounting. Modules will receive their operating power from the signaling line circuit or a separate two wire pair running from an appropriate power supply, as required.

C. There shall be the following types of modules:

1. Type 1: Monitor Circuit Interface Module:
 a. For conventional 2-wire smoke detector and/or contact device monitoring with Class B or Class A wiring supervision. The supervision of the zone wiring will be Class B. This module will communicate status (normal, alarm, trouble) to the FACP.
 b. For conventional 4-wire smoke detector with Class B wiring supervision. The module will provide detector reset capability and over-current power protection for the 4-wire detector. This module will communicate status (normal, alarm, trouble) to the FACP.

2. Type 2: Line Powered Monitor Circuit Interface Module
 a. This type of module is an individually addressable module that has both its power and its communications supplied by the two wire signaling line circuit. It provides location specific addressability to an initiating device by monitoring normally open dry contacts. This module shall have the capability of communicating four zone status conditions (normal, alarm, current limited, trouble) to the FACP.

3. Type 3: Line Powered Control Circuit Interface Module
 a. This module shall provide control and status tracking of a Form "C" contact. The two-wire signaling line circuit shall supply power and communications to the module.

D. All Circuit Interface Modules shall be supervised and uniquely identified by the control unit. Module identification shall be transmitted to the control unit for processing according to the program instructions. Modules shall have an on-board LED to provide an indication that the module is powered and communicating with the FACP. The LEDs shall provide a troubleshooting aid since the LED blinks on poll whenever the peripheral is powered and communicating.

2.10 VOICE ALARM NOTIFICATION APPLIANCES

A. Speaker: Speaker notification appliances shall be listed to UL 1480.

1. The speaker shall operate on a standard 25VRMS or 70.7VRMS NAC using twisted, shielded wire.

2. The following taps are available: 0.25W, 0.50W, 1.0W and 2.0W. At the 1.0W tap, the speaker has minimum UL rated sound pressure level of 84dBA at 10 feet.

3. The S/V shall have a frequency response of 400 to 4000 Hz for Fire Alarm and 125 to 12 kHz for General Signaling.

4. The S/V installs directly to a 4" square, 1 ½" deep electrical box with 1 ½" extension.
B. Visible/Only: Strobe shall be listed to UL 1971. The V/O shall consist of a xenon flash tube and associated lens/reflector system. The V/O enclosure shall mount directly to standard single gang, double gang or 4” square electrical box, without the use of special adapters or trim rings. V/O appliances shall be provided with different minimum flash intensities of 15cd, 30cd, 75cd and 110cd. Provide an indicator inside the strobe lens to indicate the listed candela rating of the specific Visible/Only appliance.

C. Speaker/Visible: Combination Speaker/Visible (S/V) units combine the speaker and visible functions into a common housing. The S/V shall be listed to UL 1971 and UL 1480.
1. Twisted/shielded wire is required for speaker connections on a standard 25VRMS or 70.7VRMS NAC.
2. The following taps are available: 0.25W, 0.50W, 1.0W and 2.0W. At the 1.0W tap, the speaker has minimum UL rated sound pressure level of 84dBA at 10 feet.
3. The S/V shall have a frequency response of 400 to 4000 Hz for Fire Alarm and 125 to 12 kHz for General Signaling.
4. The S/V installs directly to a 4” square, 1 ½” deep electrical box with 1 ½” extension.

D. Notification Appliance Circuit provides synchronization of strobes at a rate of 1Hz and operates horns with a Temporal Code Pattern operation. The circuit shall provide the capability to silence the audible signals, while the strobes continue to flash, over a single pair of wires. The capability to synchronize multiple notification appliance circuits shall be provided.

E. Accessories: The contractor shall furnish any necessary accessories.

2.11 NAC Power Extender
A. The IDNet NAC Power Extender panel shall be a stand-alone panel capable of powering a minimum of 4 notification appliance circuits. Notification appliance circuits shall be Class B, Style Y rated at 2 amps each. Panel shall provide capability to be expanded to 8 notification appliance circuits.
B. The internal power supply & battery charger shall be capable of charging up 12.7 Ah batteries internally mounted or 18 Ah batteries mounted in an external cabinet.
C. The NAC extender panel may be mounted close to the host control panel or can be remotely located. The IDNET Addressable NAC Extender Panel when connected to an addressable panel shall connect to the host panel via an IDNet communications channel. Via the IDNET channel each output NAC can be individually controlled for general alarm or selective area notification.
D. For IDNet connected NAC extender panels up to five panels can be connected on a single IDNet channel.
E. Alarms from the host fire alarm control panel shall signal the NAC power extender panel to activate. The panel shall monitor itself and each of its NACs for trouble conditions and shall report trouble conditions to the host panel.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL
A. Install system components and all associated devices in accordance with applicable NFPA Standards and manufacturer's recommendations.
B. Installation to utilize a complete conduit system in compliance with NCDOI requirements. Open cable installation is not permitted.
C. Installation personnel shall be supervised by persons who are qualified and experienced in the installation, inspection, and testing of fire alarm systems. Examples of qualified personnel shall include, but not be limited to, the following:
 1. Factory trained and certified personnel.
 2. National Institute of Certification in Engineering Technologies (NICET) fire alarm level II certified personnel.
 3. Personnel licensed or certified by state or local authority.

3.2 EQUIPMENT INSTALLATION
 A. Furnish and install a complete Fire Alarm System as described herein and as shown on the plans. Include sufficient control unit(s), annunciator(s), manual stations, automatic fire detectors, smoke detectors, audible and visible notification appliances, wiring, terminations, electrical boxes, and all other necessary material for a complete operating system.
 B. Water-Flow and Valve Supervisory Switches: Connect for each sprinkler valve required to be supervised.
 C. Device Location-Indicating Lights: Locate in the public space immediately adjacent to the device they monitor.
 D. Install manual station with operating handle 48 inches (1.22 meters) above floor. Install wall mounted audible and visual notification appliances not less than 80 inches (2.03 m) above floor to bottom of lens and not greater than 96 inches (2.44 m) above floor to bottom of lens.
 E. Mount outlet box for electric door holder to withstand 80 pounds pulling force.
 F. Make conduit and wiring connections to door release devices, sprinkler valve tamper switches, fire suppression system control panels, duct smoke detectors and other devices as indicated.
 G. Automatic Detector Installation: Conform to NFPA 72.

3.3 PREPARATION
 A. Coordinate work of this Section with other affected work and construction schedule.

3.4 WIRING INSTALLATION
 A. System Wiring: Wire and cable shall be a type listed for its intended use by an approval agency acceptable to the Authority Having Jurisdiction (and shall be installed in accordance with the appropriate articles from the current approved edition of NFPA 70: National Electric Code (NEC).
 B. Contractor shall obtain from the Fire Alarm System Manufacturer written instruction regarding the appropriate wire/cable to be used for this installation. No deviation from the written instruction shall be made by the Contractor without the prior written approval of the Fire Alarm System Manufacturer.
 C. Color Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color code for alarm initiating device circuits wiring and a different color code for supervisory circuits. Color-code notification appliance circuits differently from alarm-initiating circuits. Paint fire alarm system junction boxes and covers red.
 D. Mount end-of-line device in box with last device or separate box adjacent to last device for Class "B" supervision.
3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Services: Provide services of a factory-authorized service representative to supervise the field assembly and connection of components and the pretesting, testing, and adjustment of the system.

B. Service personnel shall be qualified and experienced in the inspection, testing, and maintenance of fire alarm systems. Examples of qualified personnel shall be permitted to include, but shall not be limited to, individuals with the following qualifications:
 1. Factory trained and certified.
 2. National Institute for Certification in Engineering Technologies (NICET) fire alarm certified.
 3. Trained and qualified personnel employed by an organization listed by a national testing laboratory for the servicing of fire alarm systems.

C. Pre-testing: Determine, through pre-testing, the conformance of the system to the requirements of the Drawings and Specifications. Correct deficiencies observed in pre-testing. Replace malfunctioning or damaged items with new and retest until satisfactory performance and conditions are achieved.

D. Inspection:
 1. Inspect equipment installation, interconnection with system devices, mounting locations, and mounting methods.
 2. Verify that units and controls are properly installed, connected, and labeled and that interconnecting wires and terminals are identified.

E. Acceptance Operational Tests:
 1. Perform operational system tests to verify conformance with specifications:
 a. Each alarm initiating device installed shall be operationally tested. Each device shall be tested for alarm and trouble conditions. Contractor shall submit a written certification that the Fire Alarm System installation is complete including all punch-list items. Test battery operated emergency power supply. Test emergency power supply to minimum durations specified. Test Supervising Station Signal Transmitter. Coordinate testing with Supervising Station monitoring firm/entity.
 b. Test each Notification Appliance installed for proper operation. Submit written report indicating sound pressure levels at specified distances.
 2. Provide minimum 10 days notice of acceptance test performance schedule to Owner, and local Authority Having Jurisdiction.

F. Retesting: Correct deficiencies indicated by tests and completely retest work affected by such deficiencies. Verify by the system test that the total system meets the Specifications and complies with applicable standards.

G. Report of Tests and Inspections: Provide a written record of inspections, tests, and detailed test results in the form of a test log. Use NFPA 72 Forms for documentation.

H. Final Test, Record of Completion, and Certificate of Occupancy:
 1. Test the system as required by the Authority Having Jurisdiction in order to obtain a certificate of occupancy. Provide completed NFPA 72 Record of Completion form to Owner and AHJ.

3.6 CLEANING AND ADJUSTING

A. Cleaning: Remove paint splatters and other spots, dirt, and debris. Clean unit internally using methods and materials recommended by manufacturer.

B. Occupancy Adjustments: When requested within one year of date of Substantial Completion, provide on-site assistance in adjusting sound pressure levels and adjusting controls and
sensitivities to suit actual occupied conditions. Provide up to three visits to the site for this purpose.

3.7 TRAINING
A. Provide the services of a factory-authorized service representative to demonstrate the system and train Owner's maintenance personnel as specified below.
 1. Train Owner's maintenance personnel in the procedures and schedules involved in operating, troubleshooting, servicing, and preventive maintenance of the system. Provide a minimum of 8 hours training.
 2. Schedule training with the Owner at least seven days in advance.